Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e29259, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623215

RESUMO

This paper presents an experimental study of partial discharge activity in ferrofluids based on biodegradable transformer oil and iron oxide nanoparticles. Three ferrofluid samples with low, medium and high nanoparticle concentrations are employed in the research. The basic ferrofluid characterization is followed by a partial discharge experiment exposing the ferrofluids to a high voltage in a needle-plate electrode configuration. The analysis confirms that the apparent charge and number of discharges decrease with increasing nanoparticle concentration. These findings are interpreted with reference to the well-recognised electro-hydrodynamic streamer model. The charge trapping by nanoparticles hinders the ionization and discharge development. The study also focuses on the partial discharge activity in the ferrofluids under the action of a static magnetic field acting perpendicularly to the electric field. A decreasing trend in the number of discharges due to the magnetic field is revealed. A qualitative explanation is provided based on the field-induced cluster formation and charge mobility reduction. The presented experiment and the discussed findings may be valuable for practical application of the ferrofluid in high voltage equipment with a special need for partial discharge suppression.

2.
Eur J Pharm Sci ; 193: 106683, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142949

RESUMO

Treating oral diseases remains challenging as API is quickly washed out of the application site by saliva turnover and mouth movements. In situ gels are a class of application forms that present sol-gel transition's ability as a response to stimuli. Their tunable properties are provided using smart polymers responsible for stimuli sensitivity, often providing mucoadhesivity. In this study, antimicrobial in situ gels of thermosensitive and pH-sensitive polymers loaded with silver nanoparticles were prepared and evaluated. The nanoparticles were prepared by green synthesis using Agrimonia eupatoria L. extract. According to the data analysis, the in situ gel with the most promising profile contained 15 % of Pluronic® F-127, 0.25 % of methylcellulose, and 0.1 % of Noveon® AA-1. Pluronic® F-127 and methylcellulose significantly increased the viscosity of in situ gels at 37 °C and shear rates similar to speaking and swallowing. At 20 °C, a behavior close to a Newtonian fluid was observed while being easily injectable (injection force 13.455 ±â€¯1.973 N). The viscosity of the formulation increased with temperature and reached 2962.77 ±â€¯63.37 mPa·s (37 °C). A temperature increase led to increased adhesiveness and rigidity of the formulation. The critical sol-gel transition temperature at physiological pH was 32.65 ±â€¯0.35 °C. 96.77 ±â€¯3.26 % of Ag NPs were released by erosion and dissolution of the gel after 40 min. The determination of MIC showed effect against E. coli and S. aureus (0.0625 mM and 0.5000 mM, respectively). The relative inhibition zone diameter of the in situ gel was 73.32 ±â€¯11.06 % compared to gentamicin sulfate. This work discusses the optimization of the formulation of novel antibacterial in situ gel for oromucosal delivery, analyses the impact of the concentration of excipients on the dependent variables, and suggests appropriate evaluation of the formulation in terms of its indication. This study offers a promising dosage form for local treatment of oral diseases.


Assuntos
Nanopartículas Metálicas , Poloxâmero , Poloxâmero/química , Prata , Escherichia coli , Staphylococcus aureus , Temperatura , Géis/química , Metilcelulose
3.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222296

RESUMO

A low-frequency dielectric response of a ferrofluid based on transformer oil and MnZn ferrite nanoparticles is investigated in a gradient magnetic field. Four ferrofluid samples of various nanoparticle concentrations were introduced into planar micro-capacitors located over a magnetized tip. The dielectric spectra were measured in the frequency range from 0.1 Hz to 200 kHz and in the local magnetic field up to 100 mT. The spectra exhibit a dielectric relaxation ascribed to nanoparticle interfacial polarization. The low-frequency spectrum of each ferrofluid decreases upon application of the magnetic field up to 20 mT. The decrease in dielectric permittivity is caused by a magnetic force acting on larger nanoparticles in the gradient magnetic field. It is assumed that the interfaces of the concentrated nanoparticles in the gradient field do not contribute to the effective dielectric response. This reduces the effective relaxation time and shifts the relaxation toward higher frequencies. The dielectric spectra are well described by a relaxation fit function consisting of one Havriliak-Negami and a conductivity term. The fitting confirms that the only effect of the gradient magnetic field on the dielectric spectra is the shift of the dielectric relaxation and the decrease of the amplitude in the imaginary permittivity. This behavior is evident from a master plot, where all dielectric relaxations are superimposed on a single line. The knowledge of the presented behavior of the ferrofluid may be valuable when applying a ferrofluid to sharply magnetized parts of various electrical equipment (wires, tips, screws, nails, edges) as a liquid dielectric medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA